Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1248044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954988

RESUMO

Inoculation with Bacillus subtilis is a promising approach to increase plant yield and nutrient acquisition. In this context, this study aimed to estimate the B. subtilis concentration that increases yield, gas exchange, and nutrition of lettuce plants in a hydroponic system. The research was carried out in a greenhouse in Ilha Solteira, Brazil. A randomized block design with five replications was adopted. The treatments consisted of B. subtilis concentrations in nutrient solution [0 mL "non-inoculated", 7.8 × 103, 15.6 × 103, 31.2 × 103, and 62.4 × 103 colony forming units (CFU) mL-1 of nutrient solution]. There was an increase of 20% and 19% in number of leaves and 22% and 25% in shoot fresh mass with B. subtilis concentrations of 15.6 × 103 and 31.2 × 103 CFU mL-1 as compared to the non-inoculated plants, respectively. Also, B. subtilis concentration at 31.2 × 103 CFU mL-1 increased net photosynthesis rate by 95%, intercellular CO2 concentration by 30%, and water use efficiency by 67% as compared to the non-inoculated treatments. The concentration of 7.8 × 103 CFU mL-1 improved shoot accumulation of Ca, Mg, and S by 109%, 74%, and 69%, when compared with non-inoculated plants, respectively. Inoculation with B. subtilis at 15.6 × 103 CFU mL-1 provided the highest fresh leaves yield while inoculation at 15.6 × 103 and 31.2 × 103 CFU mL-1 increased shoot fresh mass and number of leaves. Concentrations of 7.8 × 103 and 15.6 × 103 increased shoot K accumulation. The concentrations of 7.8 × 103, 15.6 × 103, and 31.2 × 103 CFU mL-1 increased shoot N accumulation in hydroponic lettuce plants.

2.
Plants (Basel) ; 12(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37514313

RESUMO

Phosphate fertilization in highly weathered soils has been a major challenge for sugarcane production. The objective of this work was to evaluate the foliar levels of phosphorus (P) and nitrogen (N) and the technological quality and productivity of second ratoon cane as a function of inoculation with plant-growth-promoting bacteria (PGPBs) together with the residual effect of phosphate fertilization. The experiment was carried out at the research and extension farm of Ilha Solteira, state of São Paulo, Brazil. The experiment was designed in a randomized block with three replications in a 5 × 8 factorial scheme. The treatments consisted of five residual doses of phosphorus (0, 45, 90, 135 and 180 kg ha-1 of P2O5, 46% P) applied at planting from the source of triple superphosphate and eight inoculations from three species of PGPB (Azospirillum brasilense, Bacillus subtilis and Pseudomonas fluorescens), applied in single or co-inoculation at the base of stems of sugarcane variety RB92579. Inoculation with PGPBs influenced leaf N concentration, while inoculations with Pseudomonas fluorescens and combinations of bacteria together with the highest doses exerted a positive effect on leaf P concentration. Co-inoculation with A. brasilense + Pseudomonas fluorescens associated with a residual dose of 135 kg ha-1 of P2O5 increased stem productivity by 42%. Thus, it was concluded that inoculations with Pseudomonas fluorescens and their combinations are beneficial for the sugarcane crop, reducing phosphate fertilization and increasing productivity.

3.
Life (Basel) ; 13(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37240747

RESUMO

The challenging alterations in climate in the last decades have had direct and indirect influences on biotic and abiotic stresses that have led to devastating implications on agricultural crop production and food security. Extreme environmental conditions, such as abiotic stresses, offer great opportunities to study the influence of different microorganisms in plant development and agricultural productivity. The focus of this review is to highlight the mechanisms of plant growth-promoting microorganisms (especially bacteria and fungi) adapted to environmental induced stresses such as drought, salinity, heavy metals, flooding, extreme temperatures, and intense light. The present state of knowledge focuses on the potential, prospective, and biotechnological approaches of plant growth-promoting bacteria and fungi to improve plant nutrition, physio-biochemical attributes, and the fitness of plants under environmental stresses. The current review focuses on the importance of the microbial community in improving sustainable crop production under changing climatic scenarios.

4.
Front Plant Sci ; 14: 1146808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223804

RESUMO

Introduction and aims: The intensive cropping system and imbalance use of chemical fertilizers to pursue high grain production and feed the fast-growing global population has disturbed agricultural sustainability and nutritional security. Understanding micronutrient fertilizer management especially zinc (Zn) through foliar application is a crucial agronomic approach that could improve agronomic biofortification of staple grain crops. The use of plant growth-promoting bacteria (PGPBs) is considered as one of the sustainable and safe strategies that could improve nutrient acquisition and uptake in edible tissues of wheat to combat Zn malnutrition and hidden hunger in humans. Therefore, the objective of this study was to evaluate the best-performing PGPB inoculants in combination with nano-Zn foliar application on the growth, grain yield, and concentration of Zn in shoots and grains, Zn use efficiencies, and estimated Zn intake under wheat cultivation in the tropical savannah of Brazil. Methods: The treatments consisted of four PGPB inoculations (without inoculation, Azospirillum brasilense, Bacillus subtilis, and Pseudomonas fluorescens, applied by seeds) and five Zn doses (0, 0.75, 1.5, 3, and 6 kg ha-1, applied from nano ZnO in two splits by leaf). Results: Inoculation of B. subtilis and P. fluorescens in combination with 1.5 kg ha-1 foliar nano-Zn fertilization increased the concentration of Zn, nitrogen, and phosphorus in the shoot and grain of wheat in the 2019 and 2020 cropping seasons. Shoot dry matter was increased by 5.3% and 5.4% with the inoculation of P. fluorescens, which was statistically not different from the treatments with inoculation of B. subtilis as compared to control. The grain yield of wheat was increased with increasing nano-Zn foliar application up to 5 kg Zn ha-1 with the inoculation of A. brasilense in 2019, and foliar nano-Zn up to a dose of 1.5 kg ha-1 along with the inoculation of P. fluorescens in the 2020 cropping season. The zinc partitioning index was increased with increasing nano Zn application up to 3 kg ha-1 along with the inoculation of P. fluorescens. Zinc use efficiency and applied Zn recovery were improved at low doses of nano-Zn application in combination with the inoculation of A. brasilense, B. subtilis, and P. fluorescens, respectively, as compared to control. Discussion: Therefore, inoculation with B. subtilis and P. fluorescens along with foliar nano-Zn application is considered a sustainable and environmentally safe strategy to increase nutrition, growth, productivity, and Zn biofortification of wheat in tropical savannah.

5.
Microorganisms ; 11(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37110469

RESUMO

Wheat is one of the staple foods of the global population due to its adaptability to a wide range of environments. Nitrogen is one of the crucial limiting factors in wheat production and is considered a challenge to food security. Therefore, sustainable agricultural technologies such as seed inoculation with plant growth-promoting bacteria (PGPBs) can be adopted to promote biological nitrogen fixation (BNF) for higher crop productivity. In this context, the objective of the current study was to evaluate the effects of nitrogen fertilization and seed inoculations with Azospirillum brasilense, Bacillus subtilis and A. brasilense + B. subtilis on agronomic and yield attributes, grain yield, grain N accumulation, N use efficiency and applied N recovery in Brazilian Cerrado, which consists of gramineous woody savanna. The experiment was carried out in two cropping seasons in Rhodic Haplustox soil under a no-tillage system. The experiment was designed in a randomized complete block in a 4 × 5 factorial scheme, with four replications. The treatments consisted of four seed inoculations (control-without inoculation, inoculation with A. brasilense, B. subtilis and A. brasilense + B. subtilis) under five N doses (0, 40, 80, 120 and 160 kg ha-1, applied from urea) at the wheat tillering stage. Seed co-inoculation with A. brasilense + B. subtilis increased grain N accumulation, number of spikes m-1, grains spike-1 and grain yield of wheat in an irrigated no-tillage system of tropical savannah, regardless of the applied N doses. Nitrogen fertilization at a dose of 80 kg ha-1 significantly increased grain N accumulation and number of grains spikes-1 and nitrogen use efficiency. Recovery of applied N was increased with inoculation of B. subtilis and co-inoculation of A. brasilense + B. subtilis at increasing N doses. Therefore, N fertilization can be reduced by the inclusion of co-inoculation with A. brasilense + B. subtilis in the cultivation of winter wheat under a no-tillage system of Brazilian Cerrado.

6.
Plants (Basel) ; 11(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432883

RESUMO

A successful microbial inoculant can increase root colonization and establish a positive interaction with native microorganisms to promote growth and productivity of cereal crops. Zinc (Zn) is an intensively reported deficient nutrient for maize and wheat production in Brazilian Cerrado. It can be sustainably managed by inoculation with plant growth-promoting bacteria and their symbiotic association with other microorganisms such as arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE). The objective of this study was to evaluate the effect of Azospirillum brasilense inoculation and residual Zn rates on root colonization and grain yield of maize and wheat in succession under the tropical conditions of Brazil. These experiments were conducted in a randomized block design with four replications and arranged in a 5 × 2 factorial scheme. The treatments consisted of five Zn rates (0, 2, 4, 6 and 8 kg ha-1) applied from zinc sulfate in maize and residual on wheat and without and with seed inoculation of A. brasilense. The results indicated that root colonization by AMF and DSE in maize-wheat cropping system were significantly increased with interaction of Zn rates and inoculation treatments. Inoculation with A. brasilense at residual Zn rates of 4 kg ha-1 increased root colonization by AMF under maize cultivation. Similarly, inoculation with A. brasilense at residual Zn rates of 2 and 4 kg ha-1 reduced root colonization by DSE under wheat in succession. The leaf chlorophyll index and leaf Zn concentration were increased with inoculation of the A. brasilense and residual Zn rates. The inoculation did not influence AMF spore production and CO2-C in both crops. The grain yield and yield components of maize-wheat were increased with the inoculation of A. brasilense under residual Zn rates of 3 to 4 kg ha-1 in tropical savannah conditions. Inoculation with A. brasilense under residual Zn rates up to 4 kg ha-1 promoted root colonization by AMF and DSE in the maize cropping season. While the inoculation with A. brasilense under 2 and 4 kg ha-1 residual Zn rates reduced root colonization by AMF and DSE in the wheat cropping season. Therefore, inoculation with A. brasilense in combination with Zn fertilization could consider a sustainable approach to increase the yield and performance of the maize-wheat cropping system in the tropical savannah conditions of Brazil.

7.
Plants (Basel) ; 11(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235323

RESUMO

Even though it is a forest native plant, there are already several studies evaluating the small genome of Jatropha curcas L., which belongs to the Euphorbiaceae family, and may be an excellent representative model for the other plants from the same family. Jatropha curcas L. plant has fast growth, precocity, and great adaptability, facilitating silvicultural studies, allowing important information to be obtained quickly, and reducing labor costs. This information justifies the use of the species as a model plant in studies involving the reproduction of native plants. This study aimed to evaluate the possibility of using Jatropha curcas L. as a model plant for studies involving native forest plants and establish possible recommendations for the vegetative propagation of the species using hardwood cuttings. The information collected can be helpful to other native forest plant species, similar to Jatropha curcas L. To this end, the effects of hardwood cutting length (10, 20, and 30 cm) and the part of the hardwood cuttings (basal, middle, and apex) were evaluated. Moreover, the influence of immersing the hardwood cuttings in solutions containing micronutrients (boron or zinc) or plant regulators (2,4-D, GA3) and a biostimulant composed of kinetin (0.09 g L-1), gibberellic acid (0.05 g L-1), and 4-indole-3-butyric acid (0.05 g L-1). The experiments were carried out in duplicates. In one duplicate, sand was used as the substrate, and rooting evaluations were made 77 days after planting. In another duplicate, a substrate composed of 50% soil, 40% poultry litter, and 10% sand was used, and the evaluations of the saplings were performed 120 days after planting. The GA3 solutions inhibited the roots' and sprouts' emissions, while immersion in 2,4-D solution increased the number of primary roots at 77 days after planting. The hardwood cuttings from the basal part of the branch had the best results for producing saplings.

8.
Arch Microbiol ; 204(7): 440, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35771351

RESUMO

The use of beneficial fungi and bacteria stimulate plant growth and serve to improve yield and food quality in a sustainable manner. The electrical conductivity of nutrients solution is closely linked to better nutrition of vegetable plants in a hydroponic system. Therefore, objectives of current study were to evaluate the effect of isolated and combined inoculation with Azospirillum brasilense and Trichoderma harzianum under two electrical conductivities on growth, nutrition, and yield of lettuce in hydroponic cultivation. The experiment was designed in a strip-plot block with five replications in a 4 × 2 factorial scheme. The treatments were consisted of four microbial inoculations (without, A. brasilense, T. harzianum and co-inoculation) and electrical conductivities (1.2 and 1.4 dS m-1). Inoculation with A. brasilense and T. harzianum increased lettuce root growth by 47% and 20%, respectively. The single inoculation of T. harzianum provided higher fresh leaves yield (24%) at electrical conductivity of 1.2 dS m-1, while single inoculation with A. brasilense increased fresh leaves yield by 17% at electrical conductivity 1.4 dS m-1. The lowest shoot NO3- accumulation (40%) was observed with inoculation of A. brasilense and highest (28%) with inoculation T. harzianum in both electrical conductivities. Inoculation with A. brasilense increased leaf accumulation of K, P, Ca, Mg, Fe, Mn, Cu, and Zn, which are essential for human nutrition and being recommended to improve yield of lettuce plants in hydroponics. It is recommended to use EC 1.4 dS m-1 of the nutrients solution to improve accumulation of K, Mn, Cu, and Zn, regardless of inoculations for biofortification of lettuce with application of fertilizers.


Assuntos
Azospirillum brasilense , Humanos , Hidroponia , Hypocreales , Raízes de Plantas/microbiologia , Plantas
9.
Plants (Basel) ; 11(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35567126

RESUMO

Biofortification of cereal crops with zinc and diazotrophic bacteria is a sustainable solution to nutrient deficiency and hidden hunger. The inoculation of staple grain crops such as maize is increased with reducing productivity losses while improving nutrition and use efficiency under climatic extremes and weathered soils of tropical savannah. Therefore, objectives of our study were to evaluate the influence of seed inoculation with diazotrophic bacteria (No inoculation-Control, Azospirillum brasilense, Bacillus subtilis, and Pseudomonas fluorescens) together with residual effect of soil Zn (absence and presence) on growth, yield, Zn nutrition, Zn use efficiencies, and intake of maize in 2019 and 2020 cropping seasons. The inoculation of B. subtilis increased hundred grain mass and yield (14.5 and 17%), while P. fluorescens under residual Zn fertilization has improved shoot and grain Zn concentration in shoot (29.5 and 30.5%). and grain (25.5 and 26.2%), while improving Zn accumulation in shoot (33.8 and 35%) and grain (37.2 and 42%) of maize. The estimated Zn intake in maize was also increased with A. brasilense inoculation and residual Zn application. The Zn use efficiencies including Zn use efficiency, agro-physiological, and utilization efficiency was increased with B. subtilis, while applied Zn recovery was increased with A. brasilense inoculations under residual Zn fertilization. Zinc use efficiency was increased by 93.3 and 397% with inoculation of B. subtilis regardless of Zn application. Therefore, inoculation with B. subtilis and P. fluorescens along residual Zn fertilization is considered the most effective and sustainable strategy for agronomic biofortification of maize under harsh tropical conditions of Brazil.

10.
Microorganisms ; 10(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35056643

RESUMO

Phosphorus (P) is a critical nutrient for high sugarcane yields throughout its cultivation cycles, however, a higher amount of P becomes rapidly unavailable to plants due to its adsorption to soil colloids. Some plant growth-promoting bacteria (PGPBs) may be able to enhance P availability to plants and produce phytohormones that contribute to crop development, quality, and yield. Thus, this study aimed to evaluate leaf concentrations of nitrogen (N) and P, yield, and technological quality of sugarcane as a function of different levels of phosphate fertilization associated with inoculation of PGPBs. The experiment was carried out at Ilha Solteira, São Paulo-Brazil. The experimental design was randomized blocks with three replications, consisting of five phosphorus rates (0, 25, 50, 75, and 100% of the recommended P2O5 rate) and eight inoculations, involving three species of PGPBs (Azospirillum brasilense, Bacillus subtilis, and Pseudomonas fluorescens) which were applied combined or in a single application into the planting furrow of RB92579 sugarcane variety. The inoculation of B. subtilis and P. fluorescens provided a higher concentration of leaf P in sugarcane. The P2O5 rates combined with inoculation of bacteria alter technological variables and stalk yield of sugarcane. The excess and lack of phosphate fertilizer is harmful to sugarcane cultivation, regardless of the use of growth-promoting bacteria. We recommend the inoculation with A. brasilense + B. subtilis associated with 45 kg ha-1 of P2O5 aiming at greater stalk yield. This treatment also increases sugar yield, resulting in a savings of 75% of the recommended P2O5 rate, thus being a more efficient and sustainable alternative for reducing sugarcane crop production costs.

11.
Front Plant Sci ; 13: 1046642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714773

RESUMO

Introduction: Plant growth-promoting bacteria (PGPBs) could be developed as a sustainable strategy to promote plant growth and yield to feed the ever-growing global population with nutritious food. Foliar application of nano-zinc oxide (ZnO) is an environmentally safe strategy that alleviates zinc (Zn) malnutrition by improving biochemical attributes and storage proteins of grain. Methods: In this context, the current study aimed to investigate the combined effect of seed inoculation with PGPBs and foliar nano-ZnO application on the growth, biochemical attributes, nutrient metabolism, and yield of maize in the tropical savannah of Brazil. The treatments consisted of four PGPB inoculations [i.e., without inoculation, Azospirillum brasilense (A. brasilense), Bacillus subtilis (B. subtilis), Pseudomonas fluorescens (P. fluorescens), which was applied on the seeds] and two doses of Zn (i.e., 0 and 3 kg ha-1, applied from nano-ZnO in two splits on the leaf). Results: Inoculation of B. subtilis with foliar ZnO application increased shoot dry matter (7.3 and 9.8%) and grain yield (17.1 and 16.7%) in 2019-20 and 2020-2021 crop seasons respectively. Inoculation with A. brasilense increased 100-grains weight by 9.5% in both crop seasons. Shoot Zn accumulation was improved by 30 and 51% with inoculation of P. fluorescens in 2019-20 and 2020-2021 crop seasons. Whereas grain Zn accumulation was improved by 49 and 50.7% with inoculation of B. subtilis and P. fluorescens respectively. In addition, biochemical attributes (chlorophyll a, b and total, carotenoids, total soluble sugar and amino acids) were improved with inoculation of B. subtilis along with foliar nano ZnO application as compared to other treatments. Co-application of P. fluorescens with foliar ZnO improved concentration of grains albumin (20 and 13%) and globulin (39 and 30%). Also, co-application of B. subtilis and foliar ZnO improved concentration of grains glutelin (8.8 and 8.7%) and prolamin (15 and 21%) in first and second seasons. Discussion: Therefore, inoculation of B. subtilis and P. fluorescens with foliar nano-ZnO application is considered a sustainable and environmentally safe strategy for improving the biochemical, metabolic, nutritional, and productivity attributes of maize in tropical Savannah regions.

12.
Biosci. j. (Online) ; 36(6): 1821-1827, 01-11-2020. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1147942

RESUMO

The rubber tree (Hevea brasiliensis Müell. Arg.) is a species of significant economic interest in the natural rubber industry in Brazil and the world. This species presents recalcitrance to rooting, and its cuttings are difficult to propagate. This study aimed to evaluate the effect of the pre-conditioning of rubber tree mini-cuttings with zinc on the improvement of the adventitious rooting of rootstocks. Mini-cuttings were standardized with 45 mm length and submitted to preconditioning by immersion of the mini-cutting base in solutions containing 0.00; 0.04; 0.08; 0.16; 0.32 and 0.64 mg L-1 of Zn, for 24 hours. The experimental design was randomized blocks with six treatments and four replicates of 10 mini-cuttings. The rubber tree mini-cuttings were placed in a fitotron-type growth chamber, at 25 °C, with 12-hour photoperiod, 5,000 K intensity, and 95% of relative air humidity, for 60 days. The survival rate, number of buds, percentage of mini-cuttings that had leaf abscission, the percentage of mini-cuttings with callogenesis in the root meristem, the percentage of rooted mini-cuttings, the number of primary roots and root length were evaluated. The highest values of survival rate, the number of buds, the number of primary roots, the percentage of mini-cuttings with callogenesis in the root meristem, the percentage of rooted mini-cuttings and root length were observed with 0.16 to 0.26 Mg L-1 of Zn. The use of zinc in the mini-cuttings of rubber tree reduces linearly the percentage of mini-cuttings that had leaf abscission and the formation of callogenesis in the root meristem.


A seringueira (Hevea brasiliensis Müell. Arg.) é uma espécie de importância econômica para a indústria da borracha natural do Brasil e do mundo. Esta espécie apresenta recalcitrância ao enraizamento e suas estacas são difíceis de se propagar. Este trabalho objetivou avaliar o efeito do pré-condicionamento de miniestacas de seringueira com zinco na melhoria do enraizamento adventício de porta-enxertos. As miniestacas foram padronizadas com 45 mm de comprimento e submetidas ao pré-condicionamento por imersão da miniestaca em soluções contendo 0.00; 0,04; 0,08; 0,16; 0,32 e 0,64 mg L-1 de Zn, por 24 horas. O delineamento experimental foi em blocos ao acaso, com seis tratamentos e quatro repetições de 10 miniestacas. As miniestacas de seringueira foram colocadas em câmara de crescimento tipo fitotron, a 25 °C, com fotoperíodo de 12 horas, intensidade de 5.000 K e umidade relativa do ar de 95% por 60 dias. Foram avaliadas a taxa de sobrevivência, o número de gemas, a porcentagem de miniestacas que apresentaram abscisão foliar, o percentual de miniestacas com calogênese no meristema radicular, o percentual de miniestacas enraizadas, o número de raízes primárias e o comprimento das raízes. Os maiores valores de taxa de sobrevivência, o número de gemas, o número de raízes primárias, a porcentagem de miniestacas com calogênese no meristema radicular, o percentual de miniestacas enraizadas e o comprimento radicular foram verificados com 0,16 a 0,26 Mg L-1 de Zn. O uso de zinco nas miniestacas de seringueira reduz linearmente a porcentagem de miniestacas que tiveram abscisão foliar e a formação de calogênese no meristema radicular


Assuntos
Hevea
13.
Arq. Inst. Biol ; 86: e0992018, 2019. tab, graf
Artigo em Inglês | VETINDEX, LILACS | ID: biblio-1025909

RESUMO

The resistance of plants to pests is a feature of great importance for agriculture, as it reduces costs with insecticides and promotes increased yield resulting in higher profits. This work aimed to evaluate the feeding preference of the Spodoptera frugiperda caterpillar by different sorghum genotypes. The experiment was carried out at the Entomology Laboratory of Universidade Estadual de Mato Grosso do Sul, at University Unit of Cassilândia, from March to June 2016. The experimental design was completely randomized with ten replicates. The treatments were composed by seven sorghum genotypes: Agromen 50A40, Agromen 50A50, DOW 1G100, DOW 1G220, DOW 1G233, XB 6022 and LG 6310. Evaluations were performed with 1st instar caterpillars. The number of caterpillars that settled in the genotypes at 5, 10, 15, 20, 25, 30, 60 minutes and 24 hours after the infestation was recorded. The feeding preference index and the fresh leaf mass consumed were estimated. The Agromen 50A40 genotype showed lower attractiveness rating for the S. frugiperda among all evaluated sorghum genotypes.(AU)


A resistência das plantas às pragas é uma característica de grande importância para a agricultura, pois reduz os custos com inseticidas e promove o aumento da produtividade, resultando em maiores lucros. Este trabalho foi desenvolvido com o objetivo de avaliar a preferência alimentar da lagarta Spodoptera frugiperda por diferentes genótipos de sorgo. O experimento foi conduzido no Laboratório de Entomologia da Universidade Estadual de Mato Grosso do Sul, na Unidade Universitária de Cassilândia, no período de março a junho de 2016. O delineamento experimental foi inteiramente ao acaso, com 10 repetições. Os tratamentos foram compostos por sete genótipos de sorgo: Agromen 50A40, Agromen 50A50, DOW 1G100, DOW 1G220, DOW 1G233, XB 6022 e LG 6310. As avaliações foram realizadas com lagartas de 1° instar. Anotou-se o número de lagartas que se estabeleceram nos genótipos aos 5, 10, 15, 20, 25, 30, 60 minutos e 24 horas após a infestação. Foi estimado o índice de preferência e a massa fresca de folha consumida. O genótipo Agromen 50A40 apresentou menor atratividade para a S. frugiperda dentre todos os genótipos de sorgo avaliados.(AU)


Assuntos
Spodoptera , Sorghum , Controle de Pragas , Genótipo
14.
Ciênc. rural (Online) ; 49(7): e20180588, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1045405

RESUMO

ABSTRACT: The germination and growth of melon (Cucumis melo L.) plants can be severely affected by excess salts in the soil or irrigation water; however, negative effects of salt stress can be attenuated using appropriate methods of seed priming. Thus, effects of osmopriming as inducer of salt stress tolerance in melon seeds exposed to salinity levels were investigated in this study. Seeds were soaked for 22 h at 25 °C in the dark in distilled water (hydropriming) or 0.5% KNO3 solution (osmopriming), and after drying, were distributed in plastic boxes with blotter paper containing different NaCl solutions prepared with osmotic pressure of 0.0 MPa (control), -0.3 MPa (mild stress), and -0.6 MPa (severe stress). Unprimed dry seeds were taken as control. The plastic boxes were kept into a seed germinator, at 25 °C for 14 days. A completely randomized design in a 3 × 3 factorial schemes with four replicates of 25 seeds was used. Results showed that the seed priming with water and KNO3 may be successfully applied on melon seeds to alleviate the adverse effects of saline stress in initial stages of plant growth. However, under severe salt stress conditions, hydropriming should be used because it results in higher germination and initial growth rate of the seedlings when compared to the osmopriming. Use of unprimed seeds should not be adopted in cultivation areas affected by salinity because they result in low germination rate and reduced initial plant growth.


RESUMO: A germinação e o crescimento de plantas de melão (Cucumis melo L.) podem ser severamente afetadas pelo excesso de sais no solo ou na água de irrigação. No entanto, os efeitos negativos do estresse salino podem ser amenizados com o uso de métodos adequados de condicionamento das sementes. Assim, este estudo objetivou investigar os efeitos do osmocondicionamento como indutor da tolerância ao estresse salino em sementes de melão expostas à níveis de salinidade. As sementes foram imersas por 22 h à 25 °C em água destilada (hidrocondicionamento) ou em solução de 0,5% de KNO3 (osmocondicionamento). Após secagem, as sementes foram distribuídas em caixas plásticas com papel mata-borrão contendo as diferentes soluções de NaCl preparadas com potencial osmótico de 0,0 MPa (controle), -0,3 MPa (estresse suave) e -0,6 MPa (estresse severo). Um tratamento com sementes secas não condicionadas foi utilizado como controle. As caixas plásticas foram mantidas em germinador de sementes, a 25 °C por 14 dias. O delineamento experimental foi inteiramente casualizado, em esquema fatorial 3 × 3, com quatro repetições de 25 sementes. Os resultados mostraram que o condicionamento de sementes com água e KNO3 pode ser aplicado com sucesso em sementes de melão para amenizar os efeitos adversos do estresse salino durante o estágio inicial de crescimento das plantas. No entanto, sob estresse salino severo, o hidrocondicionamento deve ser utilizado por resultar em maior percentagem de germinação e maior taxa de crescimento inicial das plântulas quando comparado ao osmocondicionamento. O uso de sementes de melão sem condicionamento prévio não deve ser adotado em áreas de cultivo afetadas pela salinidade, pois resultam em baixa taxa de germinação e reduzido crescimento inicial das plantas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...